If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+^2-32x+4+52=0
We add all the numbers together, and all the variables
4x^2-32x=0
a = 4; b = -32; c = 0;
Δ = b2-4ac
Δ = -322-4·4·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-32}{2*4}=\frac{0}{8} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+32}{2*4}=\frac{64}{8} =8 $
| 12n/3=48 | | a/5a−2a+4=22−3a | | 19x-15x=36 | | 3x+5-2=6 | | 16k/2=24 | | y″+49y=0 | | 3x^2+5x+19=0 | | 13y+15y=168 | | 5s-42=103 | | 16x+12-6x+10=30 | | (x^2-0.25)(x-1)=0 | | 1.65xA=1.7075 | | 5^x+1=20 | | 2^3x+1*2*4^5x*4^2=16^x | | 7=x−11 | | (x-9)/6=-8 | | (x+6)/5=3 | | x³(+60)=2 | | 5e=31 | | 7,5e=32 | | -a+6=-2 | | (2x+1/25)-(7/15)=0 | | -2a-1=-7 | | 2x+1/25-7/15=0 | | -2a+1=-7 | | -2a+1=-13 | | 5a+1=-14 | | 15(x-6)²=135 | | 3x2–6=21 | | 2,8e=32 | | 10+2n=8n+10 | | 3,4e=32 |